Systemic Inflammation and Vitamin D

Authors

  • Kerem URAL
  • Hasan ERDOĞAN
  • Serdar PAŞA
  • Songül ERDOGAN Aydın Adnan Menderes Üniversitesi

DOI:

https://doi.org/10.5281/zenodo.18147278

Keywords:

Systemic inflammation, Vitamin D, Immune response, Acute phase response

Abstract

Systemic inflammation is a fundamental component of many pathological processes, including autoimmune diseases, infections, metabolic disorders, and cardiovascular diseases, and is characterized by excessive and uncontrolled production of pro-inflammatory cytokines. Although vitamin D has traditionally been associated with calcium–phosphorus homeostasis and bone metabolism, the demonstration of vitamin D receptor (VDR) expression in numerous immune cells has led to its recognition as an important hormone involved in the regulation of the immune system and inflammatory responses. Low serum 25-hydroxyvitamin D concentrations have been reported to be associated with increased inflammatory cytokines, acute phase proteins, and systemic inflammatory indices in both humans and animals. In particular, studies in dogs and ruminants indicate that vitamin D deficiency may be linked to infection-related systemic inflammation, coagulation disturbances, and intestinal barrier dysfunction. Moreover, it has been suggested that vitamin D may behave as a negative acute phase protein, with its circulating levels decreasing as the severity of inflammation increases. In this context, vitamin D emerges as a potential biomarker that not only contributes to the pathogenesis of systemic inflammation but may also be useful in the assessment of disease severity and prognosis.

References

Abe, E., Miyaura, C., Sakagami, H., Takeda, M., Konno, K., Yamazaki, T., Yoshiki, S., & Suda, T. (1981). Differentiation of mouse myeloid leukemia cells induced by 1α,25-dihydroxyvitamin D₃. Proceedings of the National Academy of Sciences of the United States of America, 78(8), 4990–4994.

Adams, J. S., & Hewison, M. (2012). Extrarenal expression of the 25-hydroxyvitamin D-1-hydroxylase. Archives of Biochemistry and Biophysics, 523(1), 95–102. https://doi.org/10.1016/j.abb.2012.02.016

Ao, T., Kikuta, J., & Ishii, M. (2021). The effects of vitamin D on immune system and inflammatory diseases. Biomolecules, 11(11), 1624. https://doi.org/10.3390/biom11111624

Bailey, D., Veljkovic, K., Yazdanpanah, M., et al. (2013). Analytical measurement and clinical relevance of vitamin D₃ C3-epimer. Clinical Biochemistry, 46(3), 190–196. https://doi.org/10.1016/j.clinbiochem.2012.10.037

Bellia, A., Garcovich, C., D’Adamo, M., Lombardo, M., Tesauro, M., & Donadel, G. (2013). Serum 25-hydroxyvitamin D levels are inversely associated with systemic inflammation in severe obese subjects. Internal and Emergency Medicine, 8(1), 33–40. https://doi.org/10.1007/s11739-011-0584-9

Bernard, G. R., Vincent, J. L., Laterre, P. F., et al. (2001). Efficacy and safety of recombinant human activated protein C for severe sepsis. The New England Journal of Medicine, 344(10), 699–709. https://doi.org/10.1056/NEJM200103083441001

Bikle, D. D., Malmstroem, S., & Schwartz, J. (2017). Current controversies: Are free vitamin metabolite levels a more accurate assessment of vitamin D status than total levels? Endocrinology and Metabolism Clinics of North America, 46(4), 901–918. https://doi.org/10.1016/j.ecl.2017.07.013

Bouillon, R., & Suda, T. (2014). Vitamin D: Calcium and bone homeostasis during evolution. BoneKEy Reports, 3, 480. https://doi.org/10.1038/bonekey.2013.214

Boyan, B. D., Hyzy, S. L., Pan, Q., et al. (2016). 24R,25-dihydroxyvitamin D₃ protects against articular cartilage damage following anterior cruciate ligament transection in male rats. PLOS ONE, 11(10), e0161782. https://doi.org/10.1371/journal.pone.0161782

Cecoro, G., Annunziata, M., Iuorio, M. T., Nastri, L., & Guida, L. (2020). Periodontitis, low-grade inflammation and systemic health: A scoping review. Medicina, 56(6), 272. https://doi.org/10.3390/medicina56060272

Christakos, S., Dhawan, P., Liu, Y., Peng, X., & Porta, A. (2003). New insights into the mechanisms of vitamin D action. Journal of Cellular Biochemistry, 88(4), 695–705. https://doi.org/10.1002/jcb.10419

Christakos, S., Dhawan, P., Verstuyf, A., Verlinden, L., & Carmeliet, G. (2016). Vitamin D: Metabolism, molecular mechanism of action, and pleiotropic effects. Physiological Reviews, 96(1), 365–408. https://doi.org/10.1152/physrev.00014.2015

Codoner-Franch, P., Tavarez-Alonso, S., Simo-Jorda, R., Laporta-Martin, P., Carratala-Calvo, A., & Alonso-Iglesias, E. (2012). Vitamin D status is linked to biomarkers of oxidative stress, inflammation, and endothelial activation in obese children. The Journal of Pediatrics, 161(5), 848–854. https://doi.org/10.1016/j.jpeds.2012.04.046

Coskun, M., Olsen, J., Seidelin, J. B., & Nielsen, O. H. (2011). MAP kinases in inflammatory bowel disease. Clinica Chimica Acta, 412(7–8), 513–520. https://doi.org/10.1016/j.cca.2010.12.020

Coskun, M., Salem, M., Pedersen, J., & Nielsen, O. H. (2013). Involvement of JAK/STAT signaling in the pathogenesis of inflammatory bowel disease. Pharmacological Research, 76, 1–8. https://doi.org/10.1016/j.phrs.2013.06.007

Çöllü, E. M., Özalp, T., Erdoğan, S., Ural, K., & Erdoğan, H. (2021). Investigation of zonulin levels in dogs infected with canine distemper virus. Bozok Veterinary Sciences, 5(2), 55–61.

Day, M. J., Bilzer, T., Mansell, J., et al. (2008). Histopathological standards for the diagnosis of gastrointestinal inflammation in endoscopic biopsy samples from the dog and cat. Journal of Comparative Pathology, 138(Suppl. 1), S1–S43. https://doi.org/10.1016/j.jcpa.2008.01.001

De Vita, F., Lauretani, F., Bauer, J., et al. (2014). Relationship between vitamin D and inflammatory markers in older individuals. Age, 36(4), 9694. https://doi.org/10.1007/s11357-014-9694-4

Demling, R. H. (2005). The burn edema process: Current concepts. Journal of Burn Care & Rehabilitation, 26(3), 207–227.

Elder, C. J., & Bishop, N. J. (2014). Rickets. The Lancet, 383(9929), 1665–1676. https://doi.org/10.1016/S0140-6736(13)61650-5

Erdogan, H., Ozalp, T., Erdogan, S., & Ural, K. (2025). Assessment of novel haematological inflammatory markers (NLR, SII, and SIRI) as predictors of SIRS in dogs with canine monocytic ehrlichiosis. Veterinarska Stanica, 56(2), 235–243.

Erdoğan, S., Ural, D. A., Erdoğan, H., Ayan, A., Ural, K., Özalp, T., & Günal, İ. (2020). Evaluation of serum 25-hydroxyvitamin D₃ levels in goat kids naturally infected with Giardia duodenalis. Journal of Advances in VetBio Science and Techniques, 5(2), 43–47.

Fontaine, M., Lepape, A., Piriou, V., Venet, F., & Friggeri, A. (2016). Innate danger signals in acute injury: From bench to bedside. Anaesthesia, Critical Care & Pain Medicine, 35(4), 283–292. https://doi.org/10.1016/j.accpm.2016.03.005

Gerber, B., Hässig, M., & Reusch, C. E. (2003). Serum concentrations of 1,25-dihydroxycholecalciferol and 25-hydroxycholecalciferol in dogs. American Journal of Veterinary Research, 64(9), 1161–1166.

Gow, A. G., Else, R., Evans, H., Berry, J. L., Herrtage, M. E., & Mellanby, R. J. (2011). Hypovitaminosis D in dogs with inflammatory bowel disease. Journal of Small Animal Practice, 52(8), 411–418.

Hamad, D. A., Aly, M. M., Abdelhameid, M. A., et al. (2021). Combined blood indexes of systemic inflammation in COVID-19 patients. Journal of Epidemiology and Global Health, 12, 64–73. https://doi.org/10.1007/s44197-021-00021-5

Hardcastle, M. R., & Dittmer, K. E. (2015). Fibroblast growth factor 23. Veterinary Pathology, 52(5), 770–784. https://doi.org/10.1177/0300985814565598

Hart, P. H., Gorman, S., & Finlay-Jones, J. J. (2011). Modulation of the immune system by UV radiation. Nature Reviews Immunology, 11(9), 584–596. https://doi.org/10.1038/nri3045

Herrmann, M., Farrell, C. L., Pusceddu, I., et al. (2017). Assessment of vitamin D status. Clinical Chemistry and Laboratory Medicine, 55(1), 3–26. https://doi.org/10.1515/cclm-2016-0264

How, K. L., Hazewinkel, H. A., & Mol, J. A. (1995). Photosynthesis of vitamin D in the skin of dogs, cats, and rats. The Veterinary Quarterly, 17(Suppl. 1), S29.

Hurst, E. A., Homer, N. Z., Gow, A. G., et al. (2020). Vitamin D status is seasonally stable in northern European dogs. Veterinary Clinical Pathology, 49(2), 279–291. https://doi.org/10.1111/vcp.12859

Jones, G., Prosser, D. E., & Kaufmann, M. (2014). Cytochrome P450-mediated metabolism of vitamin D. Journal of Lipid Research, 55(1), 13–31. https://doi.org/10.1194/jlr.R031534

Kelly, J. L., O’Sullivan, C., O’Riordain, M., et al. (1997). Is circulating endotoxin the trigger for SIRS after injury? Annals of Surgery, 225(5), 530–541.

Korf, H., Wenes, M., Stijlemans, B., et al. (2012). 1,25-Dihydroxyvitamin D₃ curtails macrophage inflammatory capacity. Immunobiology, 217(12), 1292–1300.

Kraus, M. S., Rassnick, K. M., Wakshlag, J. J., et al. (2014). Relation of vitamin D status to congestive heart failure in dogs. Journal of Veterinary Internal Medicine, 28(1), 109–115.

Lippi, G., Ippolito, L., & Cervellin, G. (2010). Disseminated intravascular coagulation in burn injury. Seminars in Thrombosis and Hemostasis, 36(4), 429–436.

Manulboga, M., Tendar, Ä., Özalp, T., Erdogan, S., Ural, K., & Erdogan, H. (2024). Association of inflammatory markers and vitamin D in calves with pneumonia. Egyptian Journal of Veterinary Sciences, 55(1), 49–57.

Martineau, A. R., Wilkinson, K. A., Newton, S. M., et al. (2007). Vitamin D–inducible suppression of mycobacteria. The Journal of Immunology, 178(11), 7190–7198.

Martineau, C., Naja, R. P., Husseini, A., et al. (2018). Optimal bone fracture repair requires 24R,25-dihydroxyvitamin D₃. The Journal of Clinical Investigation, 128(8), 3546–3557. https://doi.org/10.1172/JCI98093

Mellanby, E. (1976). Nutrition classics: An experimental investigation of rickets. Nutrition Reviews, 34(11), 338–340.

Messori, A., Vacca, F., Vaiani, M., et al. (2002). Antithrombin III in patients admitted to intensive care units: A multicenter observational study. Critical Care, 6(5), 447–451.

Min, J., Jo, H., Chung, Y. J., Song, J. Y., Kim, M. J., & Kim, M. R. (2021). Vitamin D and the immune system in menopause: A review. Journal of Menopausal Medicine, 27(3), 109–114. https://doi.org/10.6118/jmm.21008

Muckart, D. J. J., & Bhagwanjee, S. (1997). American College of Chest Physicians/Society of Critical Care Medicine consensus conference definitions of the systemic inflammatory response syndrome and allied disorders in relation to critically injured patients. Critical Care Medicine, 25(11), 1789–1795.

Mungai, L. N. W., Mohammed, Z., Maina, M., & Anjumanara, O. (2021). Vitamin D review: The low hanging fruit for human health. Journal of Nutrition and Metabolism, 2021, 6335681. https://doi.org/10.1155/2021/6335681

Murayama, A., Takeyama, K., Kitanaka, S., et al. (1999). Positive and negative regulation of the renal 25-hydroxyvitamin D₃ 1α-hydroxylase gene by parathyroid hormone, calcitonin, and 1α,25(OH)₂D₃ in intact animals. Endocrinology, 140(5), 2224–2231. https://doi.org/10.1210/endo.140.5.6691

Nakazawa, H., Noda, H., Noshima, S., et al. (1993). Pulmonary transvascular fluid flux and cardiovascular function in sheep with chronic sepsis. Journal of Applied Physiology, 75(6), 2521–2528.

Oliver, J. A. (1992). Endothelium-derived relaxing factor contributes to the regulation of endothelial permeability. Journal of Cellular Physiology, 151(3), 506–511.

Osterloh, A., & Breloer, M. (2008). Heat shock proteins: Linking danger and pathogen recognition. Medical Microbiology and Immunology, 197(1), 1–8. https://doi.org/10.1007/s00430-007-0055-6

Özalp, T., & Erdoğan, H. (2019). Evaluation of 25-hydroxyvitamin D₃ concentrations in neonatal calves with diarrhea. Kocatepe Veterinary Journal, 12(3), 268–276. https://doi.org/10.30607/kvj.532206

Özalp, T., Erdoğan, H., Erdoğan, S., & Ural, K. (2025). Investigation of the relationship between vitamin D levels, fibrinogen, and platelet-to-lymphocyte ratio in neonatal calves with diarrhea. Large Animal Review, 31(5), 227–233.

Parker, V. J., Rudinsky, A. J., & Chew, D. J. (2017). Vitamin D metabolism in canine and feline medicine. Journal of the American Veterinary Medical Association, 250(11), 1259–1269. https://doi.org/10.2460/javma.250.11.1259

Patel, S., Farragher, T., Berry, J., Bunn, D., Silman, A., & Symmons, D. (2007). Association between serum vitamin D metabolite levels and disease activity in patients with early inflammatory polyarthritis. Arthritis & Rheumatology, 56(7), 2143–2149.

Pawlinski, R., Pedersen, B., Kehrle, B., et al. (2003). Regulation of tissue factor and inflammatory mediators by Egr-1 in a mouse endotoxemia model. Blood, 101(10), 3940–3947. https://doi.org/10.1182/blood-2002-06-1732

Pedersen, J., Coskun, M., Søndergaard, C., Salem, M., & Nielsen, O. H. (2014). Inflammatory pathways of importance for management of inflammatory bowel disease. World Journal of Gastroenterology, 20(1), 64–77. https://doi.org/10.3748/wjg.v20.i1.64

Peterson, C. A., & Heffernan, M. E. (2008). Serum tumor necrosis factor-α concentrations are negatively correlated with serum 25(OH)D concentrations in healthy women. Journal of Inflammation, 5, 10. https://doi.org/10.1186/1476-9255-5-10

Pierini, A., Gori, E., Lippi, I., Ceccherini, G., Lubas, G., & Marchetti, V. (2019). Neutrophil-to-lymphocyte ratio, nucleated red blood cells, and erythrocyte abnormalities in canine systemic inflammatory response syndrome. Research in Veterinary Science, 126, 150–154. https://doi.org/10.1016/j.rvsc.2019.08.028

Prietl, B., Treiber, G., Pieber, T. R., & Amrein, K. (2013). Vitamin D and immune function. Nutrients, 5(7), 2502–2521. https://doi.org/10.3390/nu5072502

Radzyukevich, Y. V., Kosyakova, N. I., & Prokhorenko, I. R. (2021). Participation of monocyte subpopulations in progression of experimental endotoxemia and systemic inflammation. Journal of Immunology Research, 2021, 1762584. https://doi.org/10.1155/2021/1762584

Rejec, A., Butinar, J., Gawor, J., & Petelin, M. (2017). Evaluation of complete blood count indices as biomarkers of systemic inflammatory response in dogs. Journal of Veterinary Dentistry, 34(4), 231–240. https://doi.org/10.1177/0898756417731775

Saridag, G., Erdogan, S., Ozalp, T., Ural, K., & Erdogan, H. (2023). The effects of Bifidobacterium animalis subsp. lactis and vitamin D on immunological response following vaccination in puppies. Macedonian Veterinary Review, 46(2).

Schroder, K., & Tschopp, J. (2010). The inflammasomes. Cell, 140(6), 821–832. https://doi.org/10.1016/j.cell.2010.01.040

Schwartz, J. B., Gallagher, J. C., Jorde, R., et al. (2018). Determination of free 25(OH)D concentrations and their relationships to total 25(OH)D. The Journal of Clinical Endocrinology & Metabolism, 103(9), 3278–3288. https://doi.org/10.1210/jc.2018-00295

Selting, K. A., Sharp, C. R., Ringold, R., Thamm, D. H., & Backus, R. (2014). Serum 25-hydroxyvitamin D concentrations in dogs: Correlation with health and cancer risk. Veterinary and Comparative Oncology, 14(3), 295–305.

Shah, B. R., Xu, W., & Mraz, J. (2021). Formulation and characterization of zein/chitosan complex particles for vitamin D₃ delivery. Journal of the Science of Food and Agriculture, 101(13), 5419–5428. https://doi.org/10.1002/jsfa.11204

Shih, E. M., Mittelman, S., Pitukcheewanont, P., Azen, C. G., & Monzavi, R. (2014). Effects of vitamin D repletion on glycemic control and inflammatory cytokines in adolescents with type 1 diabetes. Pediatric Diabetes, 15(6), 410–418.

Shimada, T., Kakitani, M., Yamazaki, Y., et al. (2004). Targeted ablation of Fgf23 demonstrates an essential role in phosphate and vitamin D metabolism. The Journal of Clinical Investigation, 113(4), 561–568. https://doi.org/10.1172/JCI19081

Shorr, A. F., Bernard, G. R., Dhainaut, J. F., et al. (2006). Protein C concentrations in severe sepsis. Critical Care, 10(3), R92. https://doi.org/10.1186/cc4930

Spoo, J. W., Downey, R. L., Griffitts, C., Horst, R. L., Levine, C. B., & Childs, R. M. (2015). Plasma vitamin D metabolites and C-reactive protein in endurance sled dogs. Journal of Veterinary Internal Medicine, 29(2), 519–525.

Şen, T., Özalp, T., & Paşa, S. (2025). Investigation of gastrointestinal biomarkers in dogs with diarrhea. Journal of Advances in VetBio Science and Techniques, 10(1), 48–51.

Tuckey, R. C., Tang, E. K. Y., Maresse, S. R., et al. (2019). Catalytic properties of 25-hydroxyvitamin D₃ 3-epimerase. Archives of Biochemistry and Biophysics, 666, 16–21. https://doi.org/10.1016/j.abb.2019.03.010

Wolf, S. E., Rose, J. K., Desai, M. H., et al. (1997). Mortality determinants in massive pediatric burns. Annals of Surgery, 225(5), 554–565.

Zehnder, D., Bland, R., Walker, E. A., et al. (1999). Expression of 25-hydroxyvitamin D₃-1α-hydroxylase in the human kidney. Journal of the American Society of Nephrology, 10(12), 2465–2473.

Zhang, Q., Raoof, M., Chen, Y., et al. (2010). Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature, 464(7285), 104–107. https://doi.org/10.1038/nature08780

Zhu, J. G., Ochalek, J. T., Kaufmann, M., et al. (2013). CYP2R1 is a major contributor to 25-hydroxyvitamin D production in vivo. Proceedings of the National Academy of Sciences of the United States of America, 110(39), 15650–15655. https://doi.org/10.1073/pnas.1315006110

Additional Files

Published

04-01-2026

How to Cite

URAL, K. ., ERDOĞAN, H., PAŞA, S. ., & ERDOGAN, S. (2026). Systemic Inflammation and Vitamin D. Turkish Journal of Veterinary Internal Medicine, 4(2), 40–47. https://doi.org/10.5281/zenodo.18147278

Issue

Section

Articles

Most read articles by the same author(s)